Archive Page 2

What’s the Difference between Genuine, Remanufactured, and Compatible Ink Cartridges?

With the elevated prices of inks and toners these days, Remanufactured and Compatible cartridges are becoming the more popular choice to replace old or used ink and toner cartridges with. Both Remanufactured and Compatible cartridges are offered at only a fraction of the price the OEM or Genuine ink and toner cartridges are available for and they all contain identical printer compatibility and page yield specifications. So why are there three different choices of cartridges to choose from and what’s the difference between them?

OEM / Genuine Cartridges

OEM ink cartridges and OEM toner cartridges are also known as Genuine ink and Genuine toner cartridges.

OEM is an abbreviation for Original Equipment Manufacturer which means the item comes from the company that built the main equipment or printer in this case. OEM cartridges are created completely from scratch and require a lot of oil to manufacture. Companies such as Brother, HP, Canon, Xerox, Kodak, Dell, and so forth are all OEM or brand name companies that offer Genuine ink and toner cartridges to replace the cartridges that came with the printer during the purchase.

Since each component of the cartridge is created from scratch at the brand name manufacturer’s facility, Genuine cartridges tend to be the least environmentally friendly replacement. Several ounces of oil are used to produce an average sized ink cartridge and toner cartridges, being much bigger components, use nearly a gallon of oil to be created. These replacement cartridges also need new rubber, plastic, foam, metal, paper, and inks or toner powder to complete the component.

These companies make the necessary arrangements for their printers and cartridges to work well together and spare no expense in doing so. OEM companies try to use the best quality parts and fill their cartridges with the best quality inks and pigments to give their customers a high quality consumable product. Unfortunately this makes the components significantly more expensive, ranging from 2 to 5 times higher than their Remanufactured and Compatible counterparts.

Compatible Cartridges

Much like the OEM cartridges, Compatible cartridges are made from scratch and are completely new components. A compatible cartridge is made from a third party manufacturer or company with the intension of bringing consumers a cheaper or more affordable alternative when it comes to replacing ink and toner. These cartridges are not made from the Original Equipment Manufacturer or brand-name Company but are intended to function and work the same way that an OEM cartridge would.

Many of these third party manufacturers use the same elements, steps, and regulations as the OEM companies to create their compatible cartridges for a product that matches or replicates the overall functionality and quality of the genuine cartridge. The quality of a Compatible cartridge will depend on the quality of company making the cartridge and distributing the cartridge.

If an extremely cheap price is available, way below what their competition is offering the same Compatible cartridges for, chances are these replacements are simply garbage and will not print with any consistency or quality if they print at all. Make sure the distributor ensures that all their products have been ISO certified and try to deal only with companies that are accredited with the Better Business Bureau (BBB), as these companies follow stricter guidelines and bring comparable products to the scene.

Chances are that an LC 103 ink cartridge you found for a Brother DCP and MFC printer being sold at $1.99 per cartridge is too good to be true.

Remanufactured Cartridges

Remanufactured Cartridges are the absolute best replacement alternative for the environment. Remanufacturers refill depleted ink and toner cartridges, keeping tens of thousands of pounds of industrial-grade metals and plastics out of landfills each year. Remanufacturers start with recycled cartridges and components and use them to recreate and redistribute cartridges back to the consumers.

Recycled cartridges are delivered to these remanufacturers to start the process of bringing consumers a cheaper alternative component to replace ink and toner with. These remanufacturers will first Inspect, Sort, and Grade all the recycled components and keep only the most premium pieces to ensure optimal output quality. The remaining pieces or non-conforming components are dissembled and recycled appropriately.

Once the pieces have been sorted and graded, they are split open and thoroughly cleaned before being refilled and resealed. After being sealed, factory trained technicians will assemble all cartridges with OEM grade components then send them off to be tested and packaged for quality control.

Quick Overview

In a nut shell, OEM cartridges are from the product manufacturer, Compatible cartridges are from a third party looking to provide a cheaper replacement, and Remanufactured cartridges are simply cleaned and refilled OEM cartridges. At Inkgrabber, we always recommend the less expensive Compatible and Remanufactured cartridges from Inkgrabber.com, as they significantly lower the cost to operate each printer and are tested thoroughly to ensure top quality printing results. We also offer Inkgrabber coupons that will help lower the cost of our Remanufactured and Compatible inks and toners.

The Chicagolands Best Kept Brewing Secret: PapaNicholas Coffee Blend

The man behind the brilliance:

Nicholas A PapaNicholas grew up in the 1930s helping his father and uncle in the family’s gourmet coffee business where he learned traditional European roasting techniques and the best locations to cultivate coffee beans. The rich, indulgent aroma of roasting and grinding coffee has always been a cherished moment of his childhood and he’s wanted nothing more than to share his fond memories and likeness for true premium coffees with the rest of the world.

In the early 1980s, in pursuit of his vision to bring fine gourmet coffee blends to households and grocers everywhere, he started the PapaNicholas Coffee Company. Today, the company uses the same time-honored traditions and techniques passed to Nicholas A PapaNicholas, to bring household consumers some of the finest specialty coffee blends from around the planet.

The PapaNicholas Coffee Company currently has over 50 varieties of premium whole bean and freshly ground coffee blends to choose from that are harvested, roasted, and ground daily for the highest quality, flavor, and aroma possible. The company also takes advantage of one-way freshness valves for better tasting and smelling grounds.

The company maintains freshness as their #1 priority, utilizing temperature controlled underground storage facilities and the “Fast-Pack” system, which minimizes the time from the roaster to the package. The one-way valves on the packaging are an industry standard for top premium roasters to use on their large bags of coffee as a freshness measure.  PapaNicholas takes this concept to a whole new level, employing them on every package, even their 1.75 ounce single pot packs to guarantee freshness with every cup of PapaNicholas Coffee.

The best part about PapaNicholas Coffee is they roast their coffee to order, meaning that each scoop is personally roasted for unmatched quality and flavor. Many large chain or corporate coffee roasting distributors will over-roast or burn their beans to maintain production. Thus why a chain coffee shops’ cup of coffee will always taste the same no matter where you pick it up, burnt. With PapaNicholas, each batch is roasted depending on the orders they receive throughout day to meet customers’ preferences and to enhance the overall coffee experience.

PapaNicholas offers five different levels of roasting from a light American Roast to a dark Italian / Espresso roast.  In general, a lighter roast will have a sweeter flavor and a higher amount of caffeine, whereas the darker roast has less caffeine but a richer and stronger flavor. With PapaNicholas’ select roasting process and premium beans found around the world, PapaNicholas delivers a superior cup of joe with great body, enhanced smoothness, and comforting flavors.

What’s in this stuff: Ink Chemical Composition?

Ink cartridges contain some of the most expensive liquid on the planet, but what is ink actually made of?

Impact

The ink itself, after being sold in cartridges at brand name retail prices, can reach upwards of $3 per milliliter which is around $235 per cup or $11,350 per gallon. No doubt, that is expensive any way you look at it and some even compare modern printer ink prices to fine caviars and gold. A lot of printer inks now cost even more to replace then the printer originally cost, begging the consumer to ask, why not just purchase a new printer instead of replacing the ink?

To answer the latter question, printer manufacturers do not advertise the amount of printouts that are possible with the cartridges found inside the box when buying a new printer. This is because they are starter ink cartridges and are intended for consumers to get an idea of what the printer output is like or capable of and not necessarily how much ink will be in a replacement cartridge.  Thus, replacement ink cartridges will always yield more printouts then the included cartridges when purchasing a new printer.

The Mixture

Most ink compositions are a fairly basic mixture of fine pigment particles dispersed in a solvent which is generally a liquid or aqueous solution, although the solvent can be organic. Some formulations will also have colorants when the pigmented materials do not apply to the desired color. And with advanced formulas of inks such as the ChromaLife 100+, DURAbrite, UltraChrome, and other specially named inks, further ingredients are added to improve the overall chemical composition.

The additional ingredients found in these specialty cartridges have a specific purpose from reducing foaming action to controlling surface properties. The addition of pH modifiers will help to control the acidity levels of the mixture so the composition does not corrode the metal printheads inside the machine. Humectants can be added to keep the mixture from prematurely dying a substrate or surface while surfactants act as wetting agents, helping to control surface properties. Defoaming or antifoaming agents can also be added to regulate foam formation, as foam creates air pockets and uneven ink flow. Thickeners or rheology modifiers can also be added to provide needed viscosity to the jetted out liquid ink. Perhaps the most common addition to ink compositions is the polymeric resins or polymers which give pigments or colorants a glass-like coating that protects, reflects light, and keeps particles from binding or clumping together. And to prevent fungal and bacterial growth that can spoil chemical ink compositions, biocides are also added.

Metal Colorants

Black ink cartridges still use carbon to achieve the black tonal output as past attempts at substituting carbon for other metals failed due to toxicity or financial reasons. Most white ink formulations have titanium dioxide, being rutile or anatase crystals in tetragonal form. Both anatase and rutile are just different forms of titanium dioxide known for their rich color and luster. Moreover, specific metallic pigments such as copper-zinc alloy powder and aluminum powder have been used in novelty gold and silver inks which are very rare. Some other miscellaneous inorganic pigmented metals have also been used in various photographic inks to provide luminescent and pearlescent effects.

Colorants

Cyan ink cartridges get their bright blue hue from Direct Blue 199 dye which is made of copper phthalocyanine and sulfur. This substance is a direct dye, being able to directly contact and bond to fibrous substrates like paper and cloth without needing a binding confounder or fixative.

The Magenta vibrancy comes from Reactive Red dye 23 which is a dark red powder that has a high pH level and high lightfastness (resistance to fading in light). Many formulations containing Reactive Red Dye 23, will need both a pH modifiers and a confounder to help hold the mixture to a substrate before the dye reacts and adheres to cellulose like material.

The Yellow coloration comes from Acid Yellow dye 23, which is also known by chefs and food fanatics because it’s a common coloring agent used in foods. And although Acidic Yellow Dye 23 is found in foods, this dye has been known to trigger allergic reactions such as asthma attacks, hives, and contact dermatitis so do not try to ingest this yellow ink as it may be hazardous unlike its more natural cousin, yellow food coloring.

Miscellaneous Materials

Cyclahexanone is an organic solvent or colorless oil that helps ink adhere to polymers, making this chemical ideal for outdoor use and application on smooth surfaces. Cyclahexanone is also a precursor to creating nylon when oxidized with nitric acid. This substance is also commonly found with reactive dyes as it will hold the pigments in place until they naturally react to cellulose like material.

Ethoxylated acetylenic diols is the most common surfactant that is responsible for the viscosity or reduction of surface tension in most ink formulations. This substance is a low foaming wetting agent that also improves freeze-thaw stability of acrylic systems.  Ethoxylated acetylenic diols is also an excellent, oil in water, emulsifier.

Ethylenediaminetetraacetic acid, more commonly known to be abbreviated as EDTA, is a colorless water-soluble solid used to dissolve limescale and keep the printheads clean and bacteria free. EDTA acts by creating covalent bonds on the printheads, effectively trapping contaminents from ruining or clogging printheads.

Furthermore, Ethylene glycol is also used frequently in ink cartridges to slow evaporation and to help prevent print nozzles from clogging.

Further Reasons for Expenses

Hp claims the reason for the lavish prices is due to the technology put into creating a cartridge that can deliver superior results. Not only does each cartridge contain multiple chemicals, each one is carefully measured out and thoroughly tested to ensure the output results can be replicated naturally. This means, you’re not really paying for the liquid so much as the labor put into designing, creating, and testing the cartridge. Some manufacturers also add other elements to cartridges such as smart chips and piezo crystals which also increase the retail price.

Inside the Ink Cartridge

Most of us use printers in our everyday lives, whether it’s at work, home, or even in libraries and schools. Printers have long been a part of our culture, revolutionizing how we received news, how advertisers were able to relay messages, how stories and lessons were able to be recorded on a wide scale, and much more. The first printers were complex machines with a numerous variety of components and attachments and needed constant monitoring. Now, we see a printer and immediately know how to operate them, how to change the ink cartridges, and how to give them a proper supply of power. In general, these machines and their accompanying cartridges are pretty familiar and very simple to use, although we seldom look at what is really happening inside the ink cartridge during the printing process.

The ink cartridge, although it looks uncomplicated and easily slides in and out of the printer when replacing the ink, is actually an intricate component with several moving, conducting, charging, and supporting pieces that make up a single ink cartridge.

The main components of every cartridge are the sump or receptacle portion which expels the ink and the peripheral walls, encasing the cartridge and giving the object its recognizable, rectangular shape (in most cases, although each manufacturer varies). These also happen to be the biggest and most prevalent pieces as they hold and protect the ink from spilling inside the printer.  The sump is also responsible for responding to and supporting the print heads, which act as a funnel to jet ink through to the media. The sump and the walls together, also make up a reservoir for the ink to rest in.

On the diametrically opposed side of the sump portion, designers usually include a small handle with a knurled surface to facilitate the insertion and removal of the ink cartridge. This basically means the cartridge has a protruding handle at the top and in the back of the unit for users to more easily handle the cartridge.  Along with an added handle, the outer portion also contains stabilizing protrusions or datum features at the bottom of the cartridge (much like a stand or feet) to accurately align the cartridge in the printer.

At the bottom of the unit, a small hole known as the charging opening is also created into the frame or wall which grants access to the ink reservoir. This is where the ink is initially filled when being put together by the assembling machine.

In between the sump portion and the framing walls of the cartridge lies a recessed region which bisects the cartridge. These recessed regions taper off to angled edges known as the chamfers. The chamfers main purpose is to correctly position media when the media is passing by the sump portion of the cartridge. The sump is actually two laterally spaced plates, each with smooth metal faces and ribbed groves on the inner section of the plates to ensure the print head is adhesively secured (or connected) to the cartridge.

A flexible circuit board or flexible member is then added to the cartridge, situated on the sump portion and part of the peripheral wall portion. The circuit board is a crucial piece to the cartridge supporting electrical traces that provide power to an actuating mechanism and delivering electrical impulses to the necessary components inside the cartridge. An electrical impulse will be regulated then distributed to “pogo” pins, a piezo crystal, or an electrical resistance heating material (such as thermal inks) to expel the droplets out of the chamber and through the print head nozzles.

To supply power to the flexible circuit board, a series of “pogo” pins in the ink trough of a printer will touch the conductor strips on the circuit board of the cartridge, creating a pathway for electricity to travel through. Sometimes chips are also added onto cartridges to count the number of pages printed with a particular cartridge and to help big corporations and brand name manufacturers regulate and ultimately monopolize the ink markets.

These are generally the main pieces involved when comprising an ink cartridge, although each manufacturer and each printer series has their own versions, additions, and arrangements of ink cartridge compositions.

Photo Ink vs. Regular Ink

There are several types of inks and ink formulations when it comes to printing, but they all have the same general purpose; to deliver an image onto a piece of media passing through the printer. However, some ink cartridges will deliver superior results when printing text and others will yield better results when producing images and photographs. The differing results are caused by the variation of elements found in the ink mixtures. An ink cartridge contains a basic mixture of water, glycol (a carrying liquid), and dyes or pigments and are intended to be jetted or sprayed onto paper or media, eventually creating an image.

Differences

The main difference between photo inkjets and regular inkjets is the ability of photo ink formulations to provide lighter tones of each color, commonly being cyan, magenta, and black. A regular cartridge will dispense wider set ink droplets to give image colors a lighter look. However, this makes lighter colored printouts look grainy and even multi-colored when inspected closely. This is because regular ink mixtures can only dispatch color so lightly, being intended for brighter execution to give printouts more vibrancy.

Photograph inks, on the other hand, will produce much lighter tones, perfect for shading and coloring elements such as faces and skin tones that have light colors. Since these mixtures produce lighter color, the ink is not as widely dispersed and results in smoother printouts that can capture high levels of detail. Many photograph ink compositions also avoid pigmented colorants since they do not sit as well on coated media such as photo glossy paper.  Ink formulations vary greatly depending on the machine being used, the frequency of ink being ejected, and depending on the type of printing the machine is intended for.

Ink Types

There are three basic ink compositions, that mostly all inks can be categorized into including Dye-Based Inks, Pigment-Based Inks, and Hybrid Inks. Dye-Based inks are composed of colorants dissolved in a liquid, such as water or glycol and have the most vivid and rich finishing results. Dye-Based inks also have a wide color gamut, providing colors unreachable by other mixtures and are compatible with a wide range of photograph papers. Unfortunately these ink mixtures do not last long and fade easily with light and become runny when moisture is added. In general, a dye-based ink formulation printout will last between 5 and 25 years depending on the surrounding environment.

Pigment-Based inks on the other hand, contain insoluble powder pigments that are suspended in the ink composition and do not dissolve into the solution like dye-based inks. These pigments are coated in a resin-like mixture making them much more stable and giving them resistances to fading or light. A pigment-based printout can last anywhere from 75 years to 150 years depending on how and where the printout was stored and displayed.  However, pigment-based inks do not soak into media as readily and have a tougher time adhering to coated paper.

Hybrid inks are a mixture of dye-based inks and pigment-based inks, and are sometimes referred to as pigmented inks. Combining the longevity of pigment-based inks with vibrancy of dye-based inks, Hybrid inks can be used for a number of applications and often offer superior printing results. Hybrid inks are known as pigmented inks since they use dye-based colorants and pigmented particles together, modifying the benefits and weaknesses of each type. Pigmented inks will have a wider color gamut than pigment-based inks but will not last as long. Pigmented inks (or Hybrid inks) can last up to 75 years when kept in an archival environment, such as being behind glass in a picture frame.

Similarities

Most inkjet printers and ink cartridges also contain conductive elements to help shepherd or guide the ink to the page, usually reducing the size of the droplet in the process, for higher resolution printouts with sharper definition. Both photo and regular ink cartridges can be found with these assisting elements. The most common element that helps to shape and delivery ink is the Piezoelectric crystals. When a small electrical current passes through a Piezo crystal, the element will rapidly change shape forcing the ink out of the printer nozzles. The reaction shapes and can reduce the ink droplet size while forcing the mixture out of the cartridge and onto the paper.

Ink cartridges have differing elements depending on the type of printout being created, which will enhance a project and the overall quality when using the right selection of inks. For example, when printing text documents, a matte black ink cartridge formulation such as the Epson T054820, will yield the best results since the ink has a softer look, making the text easier to read for long periods of time. Using a photo black ink cartridge on text document printing will result in overly shiny characters or grayish texts that do not read as well.

What is a Toner Cartridge?

Toner is a reasonably familiar substance to most people working in offices or for companies that have office photocopy machines and big industrial printers. These machines inevitably use toner to form images and text onto a sheet of media, usually being a plain white piece of paper. In other words the toner acts with the same purpose ink has, although ink is an aqueous solution whereas toner is in the form of powdery, dust-like solids. And due to the fact toner is a powder, cartridges should not be shaken as the material can spread through the air and adhere to unwanted surfaces, permanently dying them. Before handling any toner cartridge, make sure you are aware of the potential dangers and health risks involved with these units by clicking here.

In its early form, toner was a mix of carbon powder, iron oxide, and sugar. Eventually, to improve the quality of the printout, the carbon was melt-mixed with a polymer. The polymer is a thermoplastic that now comprises about 40 to 95 percent of the toner mixture and is crucial to binding and carrying colorant to the drum unit and substrate. The polymer is often referred to as the “binder” being able to hold the toner powder mixture together, carrying the powder to the transfer belt or drum unit, and holding the mixture in place for the heated fuser rollers to bind the powder to the paper with heat and pressure.

To better understand this process, let’s take a look at the different components that make up a toner cartridge and their functions. A basic toner cartridge contains several parts; one common component in each cartridge is the hopper which houses the toner powder until being picked up by a magnetic developer roller. The magnetic developer roller is a cylindrical sleeve used to transfer image forming toner powder particles to an image forming drum unit. This roller protrudes partially into the hopper and has several magnetic beads inside that will attract the toner powder mixture from the hopper to the roller during the printing process. As this piece rolls, the picked up toner is brushed against the drum unit.

The drum unit, having a greater static attraction, will once again pull the toner powder but this time from the magnetic developer roller. Any excess powder on the developer roller will be scrapped off with an MDR Doctor Blade before passing by the drum unit. The MDR Doctor Blade is a precision leveling blade that is designed to keep only one layer of toner powder on the developer roller. This ensures more evenly distributed toner and helps to prevent the drum and toner cartridge from clogging. The magnetic developer roller also has a secondary blade, known as the MDR Sealing Blade, to clean off any powder left on the surface of the roller after passing by the drum and before rotating back into the hopper section.

The drum unit itself is sometimes included with the toner cartridge in 2 in 1 or all inclusive toner cartridges. And whether the drum unit is a separate unit or has been included with the toner cartridge, the drum serves the same purpose. The drum is a photoconductive cylinder that contains a laser neutralized image of the project about to be printed out. A laser will actually neutralize parts of the drum unit, based off the desired image about to be printed. The neutralized parts of the drum will not be able to attract toner, which is how the drum forms an image, only being able to attract toner where desired on the image. Once the drum unit has picked up the toner powder from the developer rollers, the unit will then transfer them immediately to the paper substrate passing through the machine.

To keep the drum unit charged, a primary charge roller inside the toner cartridge rests against the unit, recharging the drum and eliminating neutralized areas of the unit. The drum also has a cleaning blade know as the Organic Photoconductor Wiper Blade. Any extra toner left on the surface of the drum unit after transferring the powder to the paper will be scrapped of by the wiper blade into the waste container. The last part to creating a printout involves the fuser rollers and some assisting transfer rollers that drive the media through the machine and are usually separately sold components that do not need to be exchanged as frequently as toner cartridges or even drum units.

All these components are necessary pieces to having a functional toner cartridge that can produce images onto a piece of paper using pigmented polymers, colorants, and carbons as the ink or image forming material being adhered to media. The current laser toner cartridge powders are comprised of a mixture of colorant pigments, external additives, and wax substances in addition to the binding polymers. The external additives can be iron oxide molecules, chemical release agents, charge control agents, and flow agents all designed to keep the mixture at optimal functioning compositions. Many toners now have protective wax coatings encapsulating each toner powder particle for longer lasting printouts and resistances to smudging and blurring.

Smart Chips on Printer Cartridges

Many printer manufacturers’ have added a smart chip to some of their ink and laser toner cartridges in an attempt at combating the fiscally beneficial Refill Kit and Compatible or Remanufactured ink and toner cartridge market. The sole purpose of the smart chip is to count the number of droplets dispensed from the device and report that data to the printer to track ink usage until a predetermined amount has been reached. Once that amount has been reached, the printer will display one of several messages, such as “low ink,” “out of ink,” “replace ink,” and other similar messages that prevent the user from continuing to print. These messages can also appear from time to time if a third party cartridge is used that is not recognized by the printer, even though it was just installed and is full of ink or toner. Simply refilling the cartridge will not fix the error message either, as the chip measures dispensed droplets and not the actual amount of substance inside the tanks. To solve the error message issues, there are a few different solutions consumers can try.

Solution 1: has hidden costs and can be messy

One route is by purchasing a refill kit and chip re-setter device, which is a small box-like device with a few metal prongs (or contacts) protruding out in one little section. These are very easy to use and only take a few seconds to operate. To reset the chip, the user simply has to align the chip on the cartridge to the prongs on the re-setter device and hold it there for a certain number of seconds. The re-setter will then “reset” the chip, allowing users to print the predetermined amount once more. There are some dangers involved in refilling your own cartridges and this method is not recommended unless you have a very safe and clean environment to work in. This method is messy and some toners can be toxic when inhaled or rubbed into the skin. Moreover, the device itself is an additional cost that cuts into the savings earned when refilling the ink and toners yourself.

Solution 2: free but can be complicated

There are some software companies out there offering free programs that can help the user take control of the printer’s chip such as the SSC Smart Chip and Printer Service Utility for Epson Printers. The program works with most Epson Desktop printers and was designed to reset the chip or “freeze” the count in cases where resetting is not possible. “Freezing” is a method that suspends the chip from transferring the droplet count data to the printer, which prevents the printer from locking your cartridge when reaching the predetermined amount of droplets. Freezing the chip can only be done with brand new cartridges before the user starts to print but allows the users to refill and reuse the same cartridges. These programs should always be free to use, so do not get fooled into purchasing a plan from another company offering someone else’s free software.

Solution 3: easy and affordable

The recommended option is to simply purchase Remanufactured or Compatible cartridges from a quality third party ink and toner distributor. Compatible cartridges and Remanufactured cartridges are always offered at reduced prices from the OEM (Original Equipment Manufacturer) or brand name cartridges, helping users save anywhere from 30 to 82 percent off retail. And when purchasing from quality distributors such as Inkgrabber, you can feel safe knowing that all their products have been tested and ISO9001 certified to ensure pristine functionality. These companies produce their own compatible products or refill OEM cartridges and place brand new smart chips on them for a 100% guarantee of compatibility and performance.


RSS Items Just Added to Inkgrabber